Inverse PCR and Sequencing Protocol on 5 Fly Preps
For recovery of sequences flanking piggyBac elements
This protocol is an adaptation of
"Inverse PCR and Cycle Sequencing Protocols" by E. Jay Rehm
Berkeley Drosophila Genome Project
And
"Single-Fly DNA Preps for PCR" by Greg Gloor and William Engels
Dept. of Genetics, University of Wisconsin
By
Ross Buchholz, Wes Miyazaki, Nick Dompe
and
Maddy Demsky, Stephen Thibault
Exelxis, Inc.
170 Harbor Way
South San Francisco, CA 94083

To prep the DNA for use with this protocol use the " 5 Fly Drosphila Genomic Prep for iPCR in 96-well Format" protocol.

I. Things to keep in mind before you start this protocol

- Read the whole protocol before you start to make sure each step is clear.
- Ensure that you have all reagents and primers before you start.
- Keep all reactions on ice until they go into incubators or tetrads. Use metal 96-well plate holders that have been cooled to $4^{\circ} \mathrm{C}$ for best results. Place the plate in the metal holder, which is sitting on the ice for the duration of the setup. Use these to keep the DNA/donor reaction cool during reaction setup.
- Always add enzyme last to reagent mixtures. Do this just before you are ready to add the DNA or aliquot from the previous step which then starts the reaction.
- After reagent mixture has been added to plate wells, be sure to quick spin the covered plate to pull all liquid to bottom of plate.
- The polymerase chain reaction (PCR) is covered by patents owned by Hoffman-La Roche, Inc. and F. Hoffman-La Roche Ltd. Users should obtain a license to perform the reaction.
- AT ALL STEPS USE AEROSOL TIPS

II. Reagents

This protocol optimized with the following reagents.

Reagent	Manufacturer	Catalog
96-well plate	Axygen	PCR-96-HS-C
Tape Pad	Qiagen	19570
Adhesive PCR film	Abgene	AB-0558
Aluminum Sealing Film	Axygen	$47734-816$
Sau3A I enzyme	New England Biolabs	R0169
HinP1 I enzyme	New England Biolabs	R0124
T4 DNA Ligase	New England Biolabs	M0202
Tetrad thermal cycler	MJ Research	PTC-225
AmpliTaq DNA polymerase	Perkin Elmer	E09425
ExoSAP-IT kit	USB Corp.	78200
96-well working rack	Stratagene	410094
BigDye	Applied Biosystems	4331186
ABI Prism 3700	Applied Bioystems	4308058
70\% ethanol		
multichannel pipet, aerosol tips, centrifuge, vortex		

III. Digestions (Sau3A I and HinP1 I done separately)

Sau3A I digests are for 5' iPCR

HinP1 I digests are for 3' iPCR
Protocol per reaction is as follows:
$20 \mu \mathrm{l}$ reactions done in 96-well plate

Genomic DNA (~ 0.5 fly)	$10.0 \mu \mathrm{l}$
10X buffer (NEB Sau3AI or NEB 2)	$2.0 \mu \mathrm{l}$
10X BSA (Sau3AI only)	$2.0 \mu \mathrm{l}$
Sau3AI or HinPI	4 units Sau3A1 or 5 units HinP1
ddH2 O	add to $20 \mu \mathrm{l}$ total

1) Cover plate with Adhesive PCR film.
2) Incubate @ $37^{\circ} \mathrm{C}$ for 1 hr in MJ Tetrad.
3) Incubate @ $65^{\circ} \mathrm{C}$ for 20 min . to heat inactivate.
4) Briefly centrifuge plate to spin down condensation.
5) Remove film to aliquot for ligations.
6) For storage @ $-80^{\circ} \mathrm{C}$, use Aluminum Sealing Film. Apply sheet to plate and incubate again @ $65^{\circ} \mathrm{C}$ for 15 min to seal plate. Briefly centrifuge plate to spin down condensation. Store @ $-80^{\circ} \mathrm{C}$.

IV. Ligations

Protocol per reaction is as follows:
$10.5 \mu \mathrm{l}$ reactions done in 96-well plate

Digested genomic DNA ($\sim 0.075 \mathrm{fly}$)	$3.0 \mu \mathrm{l}$
NEB 10X T4 DNA Ligase Buffer (w/ 10mM ATP)	$1.0 \mu \mathrm{l}$
ddH $_{2} \mathrm{O}$	$6.0 \mu \mathrm{l}$
NEB T4 DNA Ligase (200 Weiss units)	$0.5 \mu \mathrm{l}$

1) If doing PCR immediately following ligation;

Incubate @ Room Temp for 30 min (cover plate with Tape Pad)
Remove Tape Pad and aliquot to $1^{\text {st }}$ round PCR.
For storage @ $-80^{\circ} \mathrm{C}$, use Aluminum Sealing Film. Apply film to plate and incubate @ $65^{\circ} \mathrm{C}$ for 15 min to seal plate. Briefly centrifuge plate to spin down condensation, store @ $-80^{\circ} \mathrm{C}$.
2) If not doing PCR immediately following ligation;

Apply Aluminum Sealing Film to plate and incubate @ Room Temp for 30 min, then incubate @ $65^{\circ} \mathrm{C}$ for 15 min to seal plate. Briefly centrifuge plate to spin down condensation, store @ $-80^{\circ} \mathrm{C}$.

V. iPCR

PCR to be done in 96-well plates covered with Adhesive PCR film.
$1^{\text {st }}$ round iPCR: $20.0 \mu \mathrm{l}$ reaction

Ligated genomic DNA (~ 0.035 fly $)$	$5.0 \mu \mathrm{l}$
10 X dNTP $(2 \mathrm{mM}$ each $)$	$2.0 \mu \mathrm{l}$
forward primer $(10 \mu \mathrm{M})$	$0.4 \mu \mathrm{l}$
reverse primer $(10 \mu \mathrm{M})$	$0.4 \mu \mathrm{l}$
10 X PE AmpliTaq buffer w/ $15 \mathrm{mM} \mathrm{MgCl}{ }_{2}$	$2.0 \mu \mathrm{l}$
ddH $_{2} \mathrm{O}$	$9.9 \mu \mathrm{l}$
PE AmpliTaq (2 units)	$0.3 \mu \mathrm{l}$

piggyBac iPCR

1) $95^{\circ} \mathrm{C} 5 \mathrm{~min}$
2) $95^{\circ} \mathrm{C} 30 \mathrm{sec}$
3) $55^{\circ} \mathrm{C} 1 \mathrm{~min}$
4) $72^{\circ} \mathrm{C} 2 \mathrm{~min}$
5) GOTO 2×34
6) $72^{\circ} \mathrm{C} 10 \mathrm{~min}$
7) $12^{\circ} \mathrm{C}$ hold
8) Cycle on MJ Tetrad using "piggyBac iPCR" program with heated lid.
9) Centrifuge briefly to spin down condensation.
10) Do $1: 10$ dilution of $1^{\text {st }}$ Round PCR by adding $180 \mu 1 \mathrm{H}_{2} \mathrm{O}$.
$2^{\text {nd }}$ round iPCR: $20.0 \mu \mathrm{l}$ reaction.

$1: 10$ diluted $1^{\text {st }}$ round DNA	$5.0 \mu \mathrm{l}$
10 X dNTP $(2 \mathrm{mM}$ each $)$	$2.0 \mu \mathrm{l}$
forward primer $(10 \mu \mathrm{M})$	$0.4 \mu \mathrm{l}$
reverse primer $(10 \mu \mathrm{M})$	$0.4 \mu \mathrm{l}$
10 X PE AmpliTaq buffer w/ $15 \mathrm{mM} \mathrm{MgCl}{ }_{2}$	$2.0 \mu \mathrm{l}$
ddH $_{2} \mathrm{O}$	$9.9 \mu \mathrm{l}$
PE AmpliTaq (2 units)	$0.3 \mu \mathrm{l}$

4) Cycle on MJ Tetrad using "piggyBac iPCR" program ($\sim 3 \mathrm{hr}$ run) with heated lid.
5) Optional: Examine $5 \mu 1$ of the $3^{\prime} 2^{\text {nd }}$ round and $5^{\prime} 2^{\text {nd }}$ round iPCRs on 1.0% agarose gel.

Primers for $1^{\text {st }}$ and $2^{\text {nd }}$ round iPCR:

Primer Name	PCR Round	piggyBac end	Primer Sequence 5' to 3'
5F1	$1^{\text {st }}$	5' end	5' GAC GCA TGA TTA TCT TTT ACG TGA C 3'
5R1	$1^{\text {st }}$	5' end	5' TGA CAC TTA CCG CAT TGA CA 3'
5F2	$2^{\text {nd }}$	5 ' end	5' GCG ATG ACG AGC TTG TTG GTG 3'
5R2	$2^{\text {nd }}$	5' end	5' TCC AAG CGG CGA CTG AGA TG 3'
3F1	$1^{\text {st }}$	3' end	5' CAA CAT GAC TGT TTT TAA AGT ACA AA 3'
3R1	$1^{\text {st }}$	3' end	5' GTC AGA AAC AAC TTT GGC ACA TAT C 3'
3F2	$2^{\text {nd }}$	3' end	5' CCT CGA TAT ACA GAC CGA TAA AAC 3^{\prime}
3R2	$2^{\text {nd }}$	3' end	5' TGC ATT TGC CTT TCG CCT TAT 3'

VI. Pre-Sequencing Preparation

Strong and unique bands as well as smears from the iPCRs can be directly sequenced without extensive purification. Prior to sequencing, use the USB ExoSAP-IT kit to clean up an aliquot of the $2^{\text {nd }}$ round reactions. This kit uses Exonuclease I (degrades primers) and Shrimp Alkaline Phosphatase (degrades unincorporated nucleotides) to prepare the template for sequencing.

The protocol per reaction is as follows:

ExoSAP protocol

Done in 96-well plates covered with Adhesive PCR film Make a master mix per reaction of:

Exonuclease I $(10 \mathrm{U} / \mu \mathrm{l})$	$1 \mu \mathrm{l}$
Shrimp Alkaline Phosphatase $(2 \mathrm{U} / \mu \mathrm{l})$	$1 \mu \mathrm{l}$
$\operatorname{ddH}_{2} \mathrm{O}$	$3 \mu \mathrm{l}$

1) Remove $5 \mu 12^{\text {nd }} \mathrm{Rd}$ iPCR and add to $5 \mu \mathrm{l}$ SAP mix (to make $10 \mu \mathrm{l}$ total).
2) Run on "SAP" program on tetrad using heated lid.

SAP

1) $37^{\circ} \mathrm{C} 30 \mathrm{~min}$.
2) $85^{\circ} \mathrm{C} 15 \mathrm{~min}$.
3) $4^{\circ} \mathrm{C}$ hold
4) Do not hold @ 4° overnight. The SAP prep should be done on the day that the sequencing reactions are to be done.

VII. Cycle Sequencing Protocol for $\mathbf{3 7 0 0}$ ABI Machine

The protocol per reaction is as follows
$10 \mu 1$ reaction done in 96 -well plate

DNA $(1 \mu \mathrm{l}$ from $10 \mu \mathrm{l}$ SAP prep $)$	$1.0 \mu \mathrm{l}$
Primer $(0.8 \mu \mathrm{M})$	$4.0 \mu \mathrm{l}$
5X BigDye buffer	$1.5 \mu \mathrm{l}$
ABI BigDye $(\mathrm{v} 3.0)$ Mix	$1.0 \mu \mathrm{l}$
$\mathrm{ddH}_{2} \mathrm{O}$	$2.5 \mu \mathrm{l}$

2) Cycle Sequence (~ 2.5 hours)

BigDye

1) $96^{\circ} \mathrm{C} 4 \mathrm{~min}$
2) $96^{\circ} \mathrm{C} 30 \mathrm{sec}$
3) $50^{\circ} \mathrm{C} 15 \mathrm{sec}$
4) $60^{\circ} \mathrm{C} 4 \mathrm{~min}$
5) GOTO 2 X24
6) $12^{\circ} \mathrm{C}$ hold
7) To purify reactions add $75 \mu \mathrm{l} 70 \%$ ethanol, cover, let stand 30 minutes at room temp in the dark. Centrifuge for 30 minutes @ 2,470 RCF. Remove cover, invert on paper towel and spin @ 700 RCF for 1 min.
8) Register plate in the LIMS for runs on ABI 3700 machines.

Sequencing Primers:

Primer Name	piggyBac End	Sequence $\mathbf{5 '}^{\prime}$ to 3'
pB-5SEQ	5' end	5'-CGC GCT ATT TAG AAA GAG AGA G-3'
pB-3SEQ	3' end	5'-CGA TAA AAC ACA TGC GTC AAT T-3'

Figures:

piggyBac 5' end

piggyBac 3' end:

HinP1I
$\begin{array}{lllll}10 & 20 & 30 & 40 & 50\end{array}$
GCGCGATAATATCTCTAATATTTTGCCAAATGAAGTGCCTGGTACATCAG CGCGCTATTATAGAGATTATAAAACGGTTTACTTCACGGACCATGTAGTC
$60 \quad 70 \quad 80 \quad 90 \quad 100$

ATGACAGTACTGAAGAGCCAGTAATGAAAAAACGTACTTACTGTACTTAC TACTGTCATGACTTCTCGGTCATTACTTTTTTGCATGAATGACATGAATG
$110 \quad 120 \quad 130 \quad 140 \quad 150$
TGCCCCTCTAAAATAAGGCGAAAGGCAAATGCATCGTGCAAAAAATGCAA ACGGGGAGATTTTATTCCGCTTTCCGTTTACGIAGCACGTTTTTTACGTT

3R2
$160170 \quad 180 \quad 190 \quad 200$
AAAAGTTATTTGTCGAGAGCATAATATTGATATGTGCCAAAGTTGTTTCT TTTTCAATAAACAGCTCTCGTATTATAACTATACACGGTTTCAACAAAGA

$210220230240 \quad 250$
GACTGACTAATAAGTATAATTTGTTTCTATTATGTATAAGTTAAGCTAAT CTGACTGATTATTCATATTAAACAAAGATAATACATATTCAATTCGATTA
$260 \quad 280 \quad 290 \quad 300$
TACTTATTTTATAATACAACATGACTGTTTTTAAAGTACAAAATAAGTTT ATGAATAAAATATTATGTTGTACTGACAAAAATTTCATGTTTTATTCAAA

310320330340
ATTTTTGTAAAAGAGAGAATGTTTAAAAGTTTTGTTACTTTATAGAAGAA TAAAAACATTTTCTCTCTTACAAATTTTCAAAACAATGAAATATCTTCTT
360
$370 \quad 380$
390
400

ATTTTGAGTTTTTGTTTTTTTTTAATAAATAAATAAACATAAATAAATTG TAAAACTCAAAAACAAAAAAAAATTATTTATTTATTTGTATTTATTTAAC

410420430440 450
TTTGTTGAATTTATTATTAGTATGTAAGTGTAAATATAATAAAACTTAAT AAACAACTTAAATAATAATCATACATTCACATTTATATTATTTTGAATTA

ATCTATTCAAATTAATAAATAAACCTCGATATACAGACCGATAAAACACA TAGATAAGTTTAATTATTTATTTGGAGCTATATGTCTGGCTATTTTGTGT

TGCGTCAATTTTACGCATGATTATCTTTAACGTACGTCACAATATGATTA ACGCAGTTAAAATGCGTACTAATAGAAATTGCATGCAGTGTTATACTAAT

